A Combined Stochastic and Greedy Hybrid Estimation Capability for Concurrent Hybrid Models A Combined Stochastic and Greedy Hybrid Estimation Capability for Concurrent Hybrid Models with Autonomous Mode Transitions
نویسندگان
چکیده
Robotic and embedded systems have become increasingly pervasive in applications ranging from space probes and life support systems to robot assistants. In order to act robustly in the physical world, robotic systems must be able to detect changes in operational mode, such as faults, whose symptoms manifest themselves only in the continuous state. In such systems, the state is observed indirectly, and must therefore be estimated in a robust, memory-efficient manner from noisy observations. Probabilistic hybrid discrete/continuous models, such as Concurrent Probabilistic Hybrid Automata (CPHA) are convenient modeling tools for such systems. In CPHA, the hidden state is represented with discrete and continuous state variables that evolve probabilistically. In this paper, we present a novel method for estimating the hybrid state of CPHA that achieves robustness by balancing greedy and stochastic search. The key insight is that stochastic and greedy search methods, taken together, are often particularly effective in practice. To accomplish this, we first develop an efficient stochastic sampling approach for CPHA based on Rao-Blackwellised Particle Filtering. We then propose a strategy for mixing stochastic and greedy search. The resulting method is able to handle three particularly challenging aspects of real-world systems, namely that they 1) exhibit autonomous mode transitions, 2) consist of a large collection of concurrently operating components, and 3) are non-linear. Autonomous mode transitions, that is, discrete transitions that depend on the continuous state, are particularly challenging to address, since they couple the discrete and continuous state evolution tightly. In this paper we extend the class of autonomous mode transitions that can be handled to arbitrary piecewise polynomial transition distributions. We perform an empirical comparison of the greedy and stochastic approaches to hybrid estimation, and then demonstrate the robustness of the mixed method incorporated with our HME (Hybrid Mode Estimation) capability. We show that this robustness comes at only a small performance penalty.
منابع مشابه
A combined stochastic and greedy hybrid estimation capability for concurrent hybrid models with autonomous mode transitions
Probabilistic hybrid discrete/continuous models, such as Concurrent Probabilistic Hybrid Automata (CPHA) are convenient tools for modeling complex robotic systems. In this paper, we present a novel method for estimating the hybrid state of CPHA that achieves robustness by balancing greedy and stochastic search. To accomplish this, we 1) develop an efficient stochastic sampling approach for CPHA...
متن کاملA New Hybrid Algorithm to Optimize Stochastic-fuzzy Capacitated Multi-Facility Location-allocation Problem
Facility location-allocation models are used in a widespread variety of applications to determine the number of required facility along with the relevant allocation process. In this paper, a new mathematical model for the capacitated multi-facility location-allocation problem with probabilistic customer's locations and fuzzy customer’s demands under the Hurwicz criterion is proposed. Thi...
متن کاملCombining Stochastic and Greedy Search in Hybrid Estimation
Techniques for robot monitoring and diagnosis have been developed that perform state estimation using probabilistic hybrid discrete/continuous models. Exact inference in hybrid dynamic systems is, in general, intractable. Approximate algorithms are based on either 1) greedy search, as in the case of k-best enumeration or 2) stochastic search, as in the case of Rao-Blackwellised Particle Filteri...
متن کاملGenerating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کامل